SENSITIVITY TO ANTIBIOTICS OF STRAINS OF STAPHYLOCOCCUS AUREUS ISOLATED FROM GENITAL INFECTIONS

CAMELIA GUŢĂ

CDT Plus Medica Craiova, University of Medicine and Pharmacy Craiova

Abstract: Objectives: Genital infections caused by Staphylococcus aureus are common in medical practice and therefore, knowing the resistance phenotypes, namely the sensitivity to antibiotics of the circulating strains, as well as the emergence of methicillin-resistant strains, is a major goal motivating this study to start an appropriate early therapy. Material and method: I studied the antibiotic sensitivity of 420 strains of Staphylococcus aureus isolated from vaginal secretions during the period June 2010 - December 2011. The strains were isolated and identified in the laboratory of Filantropia Hospital of Craiova. The isolates were from patients hospitalized in the Department of Obstetrics and Gynaecology I of the Filantropia Hospital of Craiova. Specimens were seeded on selective and nonselective culture media and the identification was based on culture and morpho-tinctorial characteristics, on the presence of coagulase and on biochemical properties. Antibiotic susceptibility testing was performed by two methods: diffusimetric - Kirby-Bauer and the determination of minimum inhibitory concentrations between two break points. Results and discussions: Of the 420 studied strains, 121 (28.8%) were methicillin-resistant, and 299 (71.2%) methicillin-sensitive. The tested strains showed reduced susceptibility to macrolides and lincosamides, the dominant resistance phenotype was not inducible. Regarding aminoglycosides, 38.09% of the analyzed strains were resistant to kanamycin, 13.09% to tobramycin, and 10.95% to gentamicin. The strains showed high resistance to tetracycline (45.95%), relatively low resistance to ciprofloxacin (10.95%) and low resistance to trimethoprim-sulfamethoxazole (3.09%). Conclusions: Methicillin-resistant strains represented 28.8% of the tested strains. All strains tested were sensitive to vancomycin and linezolid. In case of drug-resistant strains, trimethoprim-sulfamethoxazole may be a therapeutic option.

INTRODUCTION

Genital infections are common in medical practice, their severity ranging from mild to potentially life-threatening forms. Excessive use of antibiotics, frequent or prolonged hospitalization, failure to strictly observe the infection control measures by the healthcare professionals are the main risk factors for increased bacterial resistance to antibiotics. Given the continuous evolution of the phenomenon of resistance to antibiotics, including methicillin-resistant S. aureus (MRSA), it is important to accurately determine the antibiotic resistance phenotypes of circulating strains.
sensitivity profile of circulating S. aureus strains. At the same time, global surveillance of antibiotic resistance through programmes such as ICAR, SENTRY, MYSTIC, warns about the importance of implementing local studies or national surveillance programmes to highlight the circulating phenotypes in order to guide empirical antimicrobial therapy in clinical situations requiring the initiation of an early antibacterial therapy.(1)

PURPOSE

The purpose of the study is to establish the sensitivity to antibiotics of Staphylococcus aureus in order to improve the therapy of vaginal infections with this germ.

METHODS

I studied the antibiotic sensitivity of 420 strains of Staphylococcus aureus isolated from vaginal secretions during the period June 2010 - December 2011.

The strains were isolated and identified in CDT Plus Medica Laboratory, Craiova and the laboratory of Filantropia Hospital of Craiova. Specimens were seeded on selective and nonselective culture media and the identification was based on culture and morpho-dyeing characteristics, on the presence of coagulase and on biochemical properties. The antibiotic sensitivity tests were done by two methods: diffusimetric - Kirby-Bauer and the determination of minimum inhibitory concentrations between two break points. Antibiotic susceptibility testing and interpretation were done in a standardized manner, following the current CLSI guidelines (Clinical and Laboratory Standards Institute) for testing antibiotics.(2)

RESULTS

I evaluated the sensitivity to beta-lactams of strains of S. aureus isolates and I found the following: 121 strains, i.e. 28.8% were resistant to methicillin (MRSA) and 71.2%, i.e 299 strains were susceptible to methicillin (MSSA).

To determine the antibiotic resistance phenotypes of S. aureus strains isolated, I determined the sensitivity of these strains to macrolides-lincosamides-streptogramins B (MLSB). I determined the resistance to macrolides-lincosamides-streptogramins B by D-test, a test that consisted in observing the antibiotic antagonism between the clindamycin disk and the erythromycin disc. I have categorized the strains where I found this phenomenon as MLSBi phenotype strains. Strains resistant to macrolides-lincosamides-streptogramins B and sensitive to ketolides have MLSBc phenotype. Strains resistant to erythromycin and susceptible to clindamycin were MLSBe phenotype.

The tested strains on which the MLSBi phenotype was noticed were reported as resistant to clindamycin. The prevalence of MLSB phenotypes is shown in table no. 1.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Total strains (n=420)</th>
<th>MRSA (n=299)</th>
<th>MSSA (n=121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLSBi</td>
<td>96 (22.85%)</td>
<td>54 (44.62%)</td>
<td>42 (14.04%)</td>
</tr>
<tr>
<td>MLSBc</td>
<td>32 (7.61%)</td>
<td>35 (28.92%)</td>
<td>5 (1.67%)</td>
</tr>
<tr>
<td>MLSBe</td>
<td>34 (8.09%)</td>
<td>15 (12.39%)</td>
<td>21 (7.02%)</td>
</tr>
</tbody>
</table>

The MRSA strains had mostly MLSBi phenotype, followed by the constitutive one, thus indicating a high resistance to lincosamides - 71.9% resistance to clindamycin (table no. 2). Compared to erythromycin, the tested strains showed high resistance, especially the MRSA ones (81.81%).

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Total strains (n=420)</th>
<th>MRSA (n=299)</th>
<th>MSSA (n=121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>386 (91.9%)</td>
<td>121 (100%)</td>
<td>275 (91.9%)</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>113 (26.9%)</td>
<td>121 (100%)</td>
<td>0</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>170 (40.47%)</td>
<td>99 (81.81%)</td>
<td>92 (30.76%)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>134 (32%)</td>
<td>87 (71.90%)</td>
<td>48 (16.05%)</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>55 (13.09%)</td>
<td>52 (42.97%)</td>
<td>6 (2%)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>46 (10.95%)</td>
<td>47 (38.84%)</td>
<td>7 (2.34%)</td>
</tr>
<tr>
<td>Trimethoprim-sulphamethoxazole</td>
<td>13 (3.09%)</td>
<td>9 (7.43%)</td>
<td>5 (1.67%)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>193 (45.95%)</td>
<td>100 (82.64%)</td>
<td>95 (31.77%)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>46 (10.95%)</td>
<td>47 (38.84%)</td>
<td>9 (3.01%)</td>
</tr>
</tbody>
</table>

The dominant phenotype observed in MSSA strains was the wild phenotype, with sensitivity to all aminoglycosides. MRSA strains had increased resistance to aminoglycosides – 89.25% showed resistance to kanamycin and 42.99% related resistance to gentamicin, respectively KTG phenotype (table no. 3.)

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Total strains (n=420)</th>
<th>MRSA (n=299)</th>
<th>MSSA (n=121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>96 (22.85%)</td>
<td>53 (43.80%)</td>
<td>51 (17.07%)</td>
</tr>
<tr>
<td>KT</td>
<td>8 (1.9%)</td>
<td>7 (5.78%)</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>KTG</td>
<td>48 (11.42%)</td>
<td>52 (42.99%)</td>
<td>12 (4.01%)</td>
</tr>
<tr>
<td>Wild</td>
<td>268 (73.83%)</td>
<td>9 (7.43%)</td>
<td>233 (77.92%)</td>
</tr>
</tbody>
</table>

We tested only the sensitivity to tetracycline, 227 strains (54.05%) proved to be sensitive (table no. 2). Note the high level of resistance of MRSA strains (82.64%), compared to MSSA strains (31.77%) (table no. 2).

The lowest level of resistance was found in trimethoprim-sulfamethoxazole for both MRSA strains (7.43%) and MSSA (1.67%) (table no. 2).

After testing the susceptibility of S. aureus isolated strains to ciprofloxacin, as shown in table no. 2, only 9 (3.01%) MSSA strains were resistant to ciprofloxacin, unlike the MRSA where a resistance of 38.84% (47 strains) was noticed.

Sensitivity to vancomycin and linezolid was of 100%, meaning that all strains were susceptible to both antibiotics.

DISCUSSIONS

Two years after the introduction of methicillin in therapy, in 1961 the first strain of MRSA is described in the UK,(3,4) Resistance to streptomycin, tetracycline, chloramphenicol and erythromycin is described along with their modification of target action of β-lactams. The phenotype resistance to penicillin. Multiple resistance to antibiotics shows a high prevalence in the 1950s. Over 40% of hospital strains resistant to more than four antibiotics are described in Seattle in 1959.(5)

The emergence of resistance to aminoglycosides occurs after 10 years of excessive use, and the first strain of MRSA resistant to gentamicin, respectively KTG phenotype is described in Seattle in 1976.(6,7)

The mechanisms by which staphylococci acquire resistance to β-lactams are: penicillinase synthesis and associated resistance to gentamicin is isolated in 1976.(6,7) Two years after the introduction of methicillin in therapy, in 1961 the first strain of MRSA is described in the UK,(3,4) Resistance to streptomycin, tetracycline, chloramphenicol and erythromycin is described along with their modification of target action of β-lactams. The phenotype resistance to penicillin. Multiple resistance to antibiotics shows a high prevalence in the 1950s. Over 40% of hospital strains resistant to more than four antibiotics are described in Seattle in 1959.(5)

The emergence of resistance to aminoglycosides occurs after 10 years of excessive use, and the first strain of MRSA resistant to gentamicin, respectively KTG phenotype is described in Seattle in 1976.(6,7) The mechanisms by which staphylococci acquire resistance to β-lactams are: penicillinase synthesis and modification of target action of β-lactams. The phenotype resistance to penicillin. Multiple resistance to antibiotics shows a high prevalence in the 1950s. Over 40% of hospital strains resistant to more than four antibiotics are described in Seattle in 1959.(5)
associated with penicillinases is penicillin-resistant - methicillin-susceptible and offers resistance to narrow-spectrum penicillins and the one related to target modification: penicillin-resistant - methicillin-resistant - causes cross-resistance to all β-lactams, being frequently associated with resistance to other groups of antibiotics.(8,9,10,11) The percentage of MRSA observed in our study fall in the range of 25-50% of the European EARS-Net report on antibiotic resistance surveillance in 2009 for Romania.(12)

The resistance to aminoglycosides is primarily enzymatic, by the action of enzymes that modify aminoglycosides. Of these, three types are mainly found in S. aureus: aminoglycoside-6'-N-acetyltransferase/2’O fosforyltransferase [AAC(6’)/APH (2’)] - encoded by the aac(6’)-Ie-aph(2’) gene, bifunctional enzyme that determines the KTG phenotype with resistance to gentamicin, kanamycin, tobramycin, neomycin, amikacin; the aminoglycoside-4’-O-nucleotidiltransferase I [ANT(4’)-I] - encoded by the ant(4’)-Ia gene inactivates kanamycin, tobramycin, neomycin, amikacin - KT phenotype, and the aminoglycoside-3’-O-fosforyltransferase III [APH(3’)-III] - encoded by the apts(3’)-IIa gene determines resistance phenotype K by acting on kanamycin, neomycin.(13,14,15)

For tetracyclines, two mechanisms of resistance were described: by active efflux (tetK, tetL genes acquisition), and chromosomal resistance (encoded by tetM, tetO genes). Staphylococci acquire quinolone resistance by two mechanisms: puntiform mutations in the chromosomal genes encoding topoisomerases and through some efflux pumps mediated by the transport protein norA.(15) Opting for fluoroquinolone therapy is recommended according to the antibiogram.(16)

CONCLUSIONS

1. The most frequently observed phenotype in the S. aureus strains isolated from genital infections was methicillin-sensitive without associated resistance to other groups of antibiotics.
2. The MRSA strains identified and tested showed an increased associated resistance to macrolides, lincosamides, aminoglycosides and tetracycline.
3. Although clindamycin has increased antistaphylococcal activity, the high percentage of resistance observed in the tested strains limits the usefulness of clindamycin in the treatment of genital infections caused by S. aureus.
4. Aminoglycosides should be used in combined therapy because their use, as sole antimicrobial agent, predisposes to the occurrence of resistance.
5. Trimethoprim-sulfamethoxazole, whose clinical effectiveness is not fully proven, may be a therapeutic option for multidrug-resistant S. aureus strains, given the high sensitivity in vitro.
6. Although the literature cites the emergence of strains resistant to vancomycin and linezolid, all strains tested were found susceptible to these antibiotics.

REFERENCES