ACUTE PANCREATITIS ETIOPATHOGENY

D. CREŢU1, R. HULPUŞ2, D. SABĂU3

1,2,3University “Lucian Blaga” of Sibiu

Abstract: Acute pancreatitis is characterized by the occurrence of necroinflammatory changes in the pancreas. Three types of necrosis may be distinguished: (1) interstitial tissue necrosis, which is autodigestive in nature and is typical of the most common forms of acute pancreatitis, which are associated with alcohol, bile duct disease, metabolic conditions, and other rare factors. Clinically, these types of pancreatitis may be either mild or severe (Atlanta classification). The mild form is also known as edematous pancreatitis, because there is edematous swelling of the pancreas combined with tiny foci of interstitial (fat) necrosis. Severe or necrotizing pancreatitis shows large areas of often hemorrhagic necrosis of the pancreas and particularly the peripancreatic tissue. Complications of acute pancreatitis, such as pseudocyst, bleeding, and infection, determine the course of the disease.

Keywords: acute pancreatitis; etiology; pathogenesis

Epidemiology of acute pancreatitis
Several studies have noted an increased incidence of acute pancreatitis in North America and Europe. [7] Differences in population and the prevalence of alcohol sick, because of inadequate reporting, the difficulty of diagnosis, varies considerably on the etiology of acute pancreatitis, either obscure pathogenesis, few effective therapeutic remedies evolving and often unpredictable. The classic design is a consequence of acute pancreatitis morphofunctional intraglandular, ductal and peripancreatic autodigestion by activating its own enzymes, triggered by different mechanisms and under the action of multiple etiologic factors. From mild to multiple organ dysfunction and sepsis, acute pancreatitis is a disorder which has numerous causes, an obscure pathogenesis, few effective therapeutic remedies evolving and often unpredictable.

Table no. 1. Summary of published population-based studies reporting on incidence and mortality of first acute pancreatitis since the year 2000.*

<table>
<thead>
<tr>
<th>First publication year</th>
<th>Period</th>
<th>Country</th>
<th>Incidence per 100,000/year</th>
<th>per</th>
<th>Aetiology (%)B:A:I **</th>
<th>Case fatality %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-1999</td>
<td>Island</td>
<td>32.3</td>
<td></td>
<td>----</td>
<td></td>
<td>10.7 (1995)</td>
</tr>
<tr>
<td>1994-2001</td>
<td>USA</td>
<td>33.2</td>
<td>43.8 (2001)</td>
<td>33:20:37</td>
<td></td>
<td>4.2</td>
</tr>
</tbody>
</table>

*Corresponding Author: Dan Cretu, 48, Tiliaşa street, Sibiu, România; e-mail: dancretzu76@yahoo.com; tel +40-0721588755
ACTA MEDICA TRANSILVANICA June 2011; 2/260-263

AMT, vol II, nr. 2, 2011, pag. 260
CLINICAL ASPECTS

* adapted from Spanier-Best Practice clinical Gastroenterology vol.22 No1, pp 45-63, 2008 ** Rounded % of causes (gallstones, alcohol, idiopathic), transplants, vascular factor intervenes. It is responsible for the initiation and evolution of severe acute pancreatitis, the extension of necrosis by massive microthrombosis and release powerful vasoactive amines [2].

From the pathophysiological point of view, this condition was compared by Lucien Leger with an explosion in a factory of arms, wanting to emphasize that every moment of its causes and worsens performance following moments. Cascade of events begins with the intraglandular proteolytic and lipolytic enzymes activation. Their release has the effect of edema, hemorrhage and tissue necrosis gland and its adjacent. So, in addition to autodigestion, responsible for the emergency citosteanecrosis spots, vascular factors intervene, leading to worsening initial phenomena [5].

This fluid is rich in enzymes may disseminate in the retroperitoneal space, usually at the root of mesentery and to the celiac plexus, leading to hydrocele, a sign which prove a severe form. Sometimes the fluid around the pancreatic gland remains stuck inside it, making pancreatic pseudocysts secondary to pancreatic necrosis. If there is a breach in parietal peritoneum, the pancreatic liquid floods peritoneal cavity, term phenomenon described as ascites pancreatitis. [4]

In addition to these changes we are witnessing the passage into the systemic circulation via portal and lymphatic and activated pancreatic enzymes. When so-called toxic enzymatic septicemia is installed-this lead to MSOF. Heavy losses in the liquid phase of pancreatitis by restraint in the Randall III space and release of hypotensive substances lead to installation of hypovolemia, an aggravating factor of organ failure, pancreatic encephalopathy and CID [4].

Next, I will briefly describe some of the elements that lead to installation deficiencies. Heart failure occurs as a result of and release of pancreatic cardiac depressant factor which lead to hypotension, hypovolemia and peripheral vasoconstriction.

At a high proportion of patients with severe acute pancreatitis, liver failure occurs with a marked decrease in the rates of phosphorylation and 40% reduction in mitochondrial ATP synthesis [3].

Hypoxia is also frequently present in these patients. Its appearance is early, whereas chest radiographs and respiratory rate are normal yet. Changes in O2 saturation but are detectable by pulse oximetry. [3] It is therefore recommended daily assessment of blood gases to detect hypoxic patients and therefore treat them accordingly.

Figure no. 1. Pathogenesis of acute pancreatitis

In acute postoperative and posttraumatic pancreatitis, in those installed after extracorporeal circulation and organ

<table>
<thead>
<tr>
<th>Causes of acute pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alcohol</td>
</tr>
<tr>
<td>• Cholelithiasis, microcholiiasis, choledocholithiasis</td>
</tr>
<tr>
<td>• Post-endoscopic retrograde cholangiopancreatography</td>
</tr>
<tr>
<td>• Hypertriglyceridaemia, Hypercalcaemia</td>
</tr>
<tr>
<td>• Autoimmune pancreatitis</td>
</tr>
<tr>
<td>• Pancreatic ductal obstruction: pancreatic cancer, sphincter of Oddi dysfuction, pancreas divisum, periampullary tumours, ascarisiasis</td>
</tr>
<tr>
<td>• Genetic: hereditary pancreatitis, cystic fibrosis</td>
</tr>
<tr>
<td>• Viral infection: coxsackie, mumps, HIV, adenovirus</td>
</tr>
<tr>
<td>• Ischaemia: intra-abdominal surgery, coronary artery bypass surgery, embolism, vasculitis</td>
</tr>
<tr>
<td>• Venom: spider, scorpion</td>
</tr>
<tr>
<td>• Idiopathic (<10%)</td>
</tr>
<tr>
<td>• Drugs</td>
</tr>
<tr>
<td>o Common: Azathioprine, 6-Mercaptopurine, Didanosine, Valproic acid, Oestrogens, Furosemide, Pentamidine, Sulphonamides, Tetracycline, Tamoxifen;</td>
</tr>
<tr>
<td>o Rare: Corticosteroids, Aminosalicylates, Metronidazole, L-asparaginase, ACE* inhibitors.</td>
</tr>
</tbody>
</table>

New elements in the pathogenesis of acute pancreatitis

Triggered by various pathogens, acute pancreatitis results from intraparenchimatous enzymatic activation with tissue destruction and necrosis disease.

Pancreatitis induced by gallstone is due mainly by biliary stones passage, and forms idiopathic labeled, the detection of the biliary sludge and microstones, is more common than previously believed. Reducing the recurrence rate of acute pancreatitis after gallbladder removal, supports the view that microstones are actually the cause of acute pancreatitis in these patients. While passage of gallstones is now accepted as a critical event in the onset of acute pancreatitis, pathophysiological mechanism is not yet well understood nor universally accepted. [2]

Acute pancreatitis in alcoholics is explained by chronic gastroduodenitis, duodenal dyskinesias, oddian spasm that stimulates releasing of secretin and pancreatic secretion in closed duct. Hyperviscosity of pancreatic secretion by protein precipitated enable canalar obstruction. In addition to this, direct toxic effect on pancreatic parenchyma, hypertriglyceridaemia, and hypercalcaemia, late duodenopancreatic re flux [2] Therefore, in the end and in these forms of pancreatitis is criminalized duodeno-pancreatic reflux.

In acute postoperative and posttraumatic pancreatitis, in those installed after extracorporeal circulation and organ

AMT, vol II, nr. 2, 2011, pag. 261
A small percentage of the total number of patients with acute pancreatitis can develop toxic psychosis with confusion (not due to excessive alcohol consumption), with complete reversibility for improving pathology.

More rarely meets encophalopathy pancreatitis. The most common diagnosis is confirmed by necropsy in unconscious patients before death, where there is a central nervous system demyelination. It is possible that these changes occur due to increased levels of lipases and proteases.

Early intracellular events in acute pancreatitis

In the sequence of events leading to pancreatic necrosis, the initial trigger mechanism is controversial and debated. It is universally accepted that the phenomenon is the autodigestion of the gland by its own enzymes. Some postmortem studies suggest that the primary premises would be periductal inflammation or periglobular fat necrosis. Many experimental studies contradict these assertions, showing that the primary lesions are acinar cell injury [9]. Acinar tissue changes not only precede those affecting the ducts pancreatic and adipose tissue, but continuous progress towards what we describe as a variety of bleeding and necrotizing pancreatitis. Moreover, an early desobstruction of the obliterated duct allows regression of the tissue necrosis. It also concluded that the critical intracellular events that precede any changes in acute pancreatitis involves the acinar cells . Acinar cells possess a remarkable variety of defense mechanisms to protect them from proteolytic and lipolytic action, of their own digestive products.

First, since the synthesis of digestive enzymes, these proteins remain stored in secretory vesicles bounded by membranes, which prevents their contact with the cytosolic vital structures. [9]

Secondly, proteases are synthesized with an activation peptide in their C-terminal end, which prevents enzymatic activity until the trigger by enzymatic enzymes in the pancreas. [9]

Thirdly, digestive enzymes are packaged and shipped together with large amounts of protease inhibitors that will prevent the activation of proteases in their compartment, thereby preventing cell necrosis. Then, even if you could get rid of digestive enzymes authorizing fragile digestive enzymes could even get rid of fragile intracellular transport vesicles, strong buffering of cytosolic proteases made by its action will protect cells from potentially active proteases. [9]

Despite these protective mechanisms developed, there was direct evidence that intraluminal activation of proteases appear indeed during the initial phase of experimental pathology. By blocking the pancreatic enzymes, acinar cells are not able to unload their zymogens to digestive enzymes .

Two intracellular components of the cytoskeleton seem to be particularly important for regular exocytosis zymogens regular digestive enzyme and therefore involved in blocking their secretion: microfilaments network terminal, which is mainly composed of actin and microtubules. During the initial phase of experimental pancreatitis it has been shown that both microtubules and microfilaments undergoes rapid disassembly [2]. In addition to the gradual disintegration of the cytoskeleton a rapid deterioration of its structural proteins, actine and betalibin has been seen. Prophylaxis exocytosis might not be sufficient to explain the premature intracellular activation of zymogens digestive enzymatic.

They proposed two hypotheses for the interpretation of early intracellular proteolysis. Some authors believe that the trypsinogen autoactivation is the responsible mechanism. Once there is a small amount of active protease it catalyzes the conversion of remaining trypsinogen and activation of other proenzymes such as chymotrypsinogen, procarboxypeptidase and proelastase [2].

The second hypothesis that attempts to explain autodigestion considers that trypsinogen is transformed into active trypsin by the action of lysosomal enzymes. In physiological conditions these two classes of pancreatic hydrolases (digestive and lysosomal) are separated from one another through a complex sorting mechanism by Golgi apparatus.

Potent inhibitors of lysosomal enzymes does not prevent pancreatitis or intracellular activation of proteases, while a serum protease inhibitor do so. The conclusion is that the subcellular redistribution or co-localisation of the lysosomal and digestive hydrolases taken separately, are not sufficient to induce activation of intracellular proteases and thus pancreas autodigestion in acute pancreatitis [9].

Swivel pancreatic enzyme trypsin, is because she is working on other proenzyme. The trypsinogen trigger specific activation, resulting ultimately in autodigestion and pancreatitis is unknown, but several mechanisms have been proposed

- Cytoskeleton rupture
- Reduce pH
- Activation of apical hydrolases and enzymes

Molecular initial steps, the induction of biliary and alcoholic pancreatitis are likely different. Typically, acinar cell injury is followed by sequestration of inflammatory cells within the gland in the acute phase. This second phase is a balance between pro and anti-inflammatory cytokines. Nitric oxide and other medication are produced and released into circulation, causing systemic inflammatory response syndrome (SIRS) [9]. MODS is likely to start several hours after onset of acute pancreatitis. Later stimulation may result from the activation of systemic inflammatory cells by extracellular matrix components released from necrotic tissue. They stimulate monocytes to secrete TNF-alpha factor, the resulting cascade of proinflammatory cytokines. Extension of pancreatic necrosis correlates with the development of organ failure and subsequently infection and appearance, but SIRS may occur without signs of infection and necrosis. [8]

Progression of acute pancreatitis

At the tissue level, the biochemical changes resulting from premature digestive enzyme activation damage the acinar cells, pancreatic interstitium, and vascular endothelium. In experimental models of acute pancreatitis, microcirculatory changes following acute pancreatic injury include vasoconstriction, capillary stasis, decreased oxygen saturation, and progressive ischemia. These microcirculatory changes lead to increased vascular permeability and edema of the gland (interstitial pancreatitis). Vascular injury could lead to amplification of the pancreatic injury by means of local microcirculatory failure, and through selective pancreatic ischemia, or ischemia–reperfusion injury.

The activation of granulocyte and macrophage leads to the release of proteolytic and lipolytic enzymes, reactive oxygen metabolites, proinflammatory cytokines as interleukins (IL) 1, 6, and 8, tumor necrosis factor (TNF), and arachidonic acid metabolites as prostaglandins, platelet-activating factor, and leukotrienes. Interestingly, cytokine activation is not limited to the intra or peri-pancreatic tissue, but can be systemic in nature.

CONCLUSIONS

Acute pancreatitis is a disease that has many causes. Each cause seems to affect the acinar cell in some way that results in the premature activation and retention of potent proteolytic enzymes. These activated enzymes then injure the acinar cell and cause the immediate release of cytokines and activate the complement system. Together, these molecules attract and sequester inflammatory cells, in particular

AMT, vol II, nr. 2, 2011, pag. 262
neutrophils, which causes further secretion of cytokines, free radicals, and other vasoactive molecules, such as nitric oxide. We propose that the released inflammatory molecules induce local effects, such as pancreatic edema and necrosis, and systemic complications, such as hypotension, tachycardia, fever, capillary leak syndrome, and hypoxia. The cytokine released in the pancreas also stimulates apoptosis, further enhancing the cell death response in pancreatitis. Much of the current research is aimed at understanding the links between these series of events and finding agents that can modulate the cascade of events involved in pancreatitis. What is promising in this endeavour is that the response produced with pancreatitis is nearly identical with all etiologies, suggesting that therapy may not have to be specific to a particular cause.

REFERENCES